
Graph-Based Data-Collection Policies for the
Internet of Things

Maribel Fernández,
Jenjira Jaimunk,

Bhavani Thuraisingham

King’s College London, University of Texas at Dallas

ICSS, December 2018



Background

Problem:

The data collected can be used to improve services; however, there
are serious privacy risks.

+ Addressed by means of privacy policies.

- Difficult to understand the scope and consequences of such
policies.



Contributions

Main contribution:

Demonstrating how to specify and visualise the CBDC policies
using a graph-based policy language

Suggest how to analyse policy properties by provided queries and
show how these queries can be answered



Preliminaries: Category-Based metamodel for Data
Collection CBDC

Recall:
Category: class, group, or domain, to which entities belong

Entities:

• A countable set Dev of IoT devices d1, d2, . . .: to represent
data sources and channels; e.g. individual sensors,
aggregators, clocks, etc.

• A countable set Di of data items di1, di2, . . . : to represent
data emanating from sensors and also contextual information
(such as location, time, identifier, etc.)

• A set A of actions: e.g., send, receive, block, encrypt,
decrypt, etc.

• A countable set C of categories c0, c1, . . .

• A countable set S of services: to represent actual services or
users that own/process data.



Preliminaries: Category-Based metamodel for Data
Collection CBDC

Axioms:

(dc1) ∀d ∈ Dev , ∀a ∈ A, ∀di ∈ DId ,
(∃c , c ′ ∈ C, (di , c) ∈ DICAd ∧ c ⊆ c ′ ∧ (a, c ′) ∈ ACA)
⇔ (a, di) ∈ ADId

(dc2) ∀d ∈ Dev , ∀a ∈ A, ∀di ∈ DId ,
(∃c , c ′∈ C, (di , c) ∈ DICAd ∧ c ′ ⊆ c ∧ (a, c ′) ∈ BACA)
⇔ (a, di) ∈ BADId

(dc3) ∀d ∈ Dev , ∀a ∈ A,∀di ∈ DId ,
((a, di) 6∈ ADId ∧ (a, di) 6∈ BADId)
⇔ (a, di) ∈ UNDET

(dc4) ∀d ∈ Dev , ADId ∩ BADId = ∅



Policy Graph

A policy graph, or graph for short, is a tuple G = (V ,E , lv , le),
where V is a set of nodes, E is a set of undirected edges,
lv : V → REC is a labelling function for nodes, such that, for
every v ∈ V , lv(v).ent ∈ D ∪ Di ∪ C ∪ A ∪ S, and le : E → REC
is a labelling function for edges, such that, for every e ∈ E between
nodes v1 and v2, le(e).adj = {v1, v2}, where v1, v2 ∈ V and
v1 6= v2. In addition, we assume that the record labels of nodes
contain a field type = T , where T ∈ {D,Di ,C ,A,S}, such that
lv(v).type = D if lv(v).ent = d ∈ D (that is, D is the type of the
nodes representing devices), and similarly Di represents data items,
C categories, S services and A actions. The type of an edge is
determined by the type of its adjacent nodes, that is, if
le(e).adj = {v1, v2}, then type(e) = (lv(v1).type, lv(v2).type).



Policy Graph [con.]

Figure below shows a path in a CBDC policy with five entities of
types D (device), Di (data items), C (category), A (action) and S
(service).



Relations in a policy graph with prohibitions

• DDIAG = {(lv(v1).ent, lv(v2).ent) | type(v1, v2) = DDi}.
• DDICAG = {(lv(v1).ent, lv(v2).ent, lv(v3).ent) |

type(v1, v2, v3) = DDi ,DiC}.
• ASCAG = {(lv(v1).ent, lv(v2).ent, lv(v3).ent) |

type(v3, v1, v2) = CAA,AS}.
• BASCAG = {(lv(v1).ent, lv(v2).ent, lv(v3).ent) |

type(v3, v1, v2) = CAB ,AS}.



Relations in a policy graph with prohibitions[con.]

• ASDIDG = {(lv(v1).ent, lv(v2).ent, lv(v4).ent,
lv(v5).ent) | ∃v31, . . . , v3n s.t. type(v5, v4, v31, . . . , v3n, v1, v2)

= DDi ,DiC , (
−→
CC )∗,CAA,AS}.

• BASDIDG = {(lv(v1).ent, lv(v2).ent, lv(v4).ent,
lv(v5).ent) | ∃v31, . . . , v3n s.t. type(v5, v4, v31, . . . , v3n, v1, v2)

= DDi ,DiC , (
←−
CC )∗,CAB ,AS}.

• UNDETG = {(lv(v1).ent, lv(v2).ent, lv(v3).ent,
lv(v4).ent) | lv(v1).type = D, lv(v2).type = DI ,
lv(v3).type = A, lv(v4).type = S} − (ASDIDG ∪ BASDIDG).



Policy

CBDCG is an abbreviation for the tuple
〈E ,DDIAG ,DDICAG ,ASCAG ,ASDIDG ,BASCAG ,BASDIDG ,
UNDETG〉



Example: Policy and path for a tanker tracking system in a
chemical plant



Example: Chemical Plant Policy



CBDC Policy Analysis and Queries

Policy content queries:

The objective of the policy content queries is to analyse policies by
obtaining policy information at the same time as the query is
established.

Here are some examples:

Are there (permitted or prohibited) actions assigned to each
category?



CBDC Policy Analysis and Queries [con.]

This query can be answered by graph-theoretic methods when
using graph policies, as follows:

All the categories have some associated (permitted or prohibited)
actions if and only if for each node v of type C there is a path of

type (
−→
CC )∗,CAA,AS or a path of type (

←−
CC )∗,CAB ,AS starting in

v .



CBDC Policy Analysis and Queries

Policy effect queries: Totality

A CBDC policy is total if, for every device d generating data items
di , the policy specifies all the actions and services that are
permitted on di and all the actions and services that are not
permitted on di .



CBDC Policy Analysis and Queries

Policy effect queries: Totality [con.]

Assuming there is a well-formed policy graph G representing the
CBDC policy, totality can be verified by computing the relations
ASDIDG and BASDIDG and checking that ASDIDG ∪ BASDIDG
contains all the relevant tuples from A× S ×Di ×D.

A CBDC policy defined by a policy graph G is total if and only if
for all (di , d) ∈ Di ×D, if (a, s) ∈ A× S applies to (di , d) then
(a, s, di , d) ∈ ASDIDG ∪ BASDIDG .



CBDC Policy Analysis and Queries

Policy effect queries: Consistency

A CBDC policy is consistent if, for any given data item, all
relevant actions are either permitted or prohibited, but not both.

Consistency is enforced by axiom (dc4), that is, the policy graph
satisfies ASDIDG ∩ BASDIDG = ∅, which means that data
collection policies defined by well formed graphs are consistent by
construction.



CBDC Policy Analysis and Queries

Policy effect queries: Absence of Conflicts

The absence of rules that permit two mutually exclusive actions on
a data item. If an action a1 performed by a service s1 is in conflict
with an action a2 performed by s2 then the policy should ensure
that if a1 is authorised then a2 is forbidden and viceversa.



CBDC Policy Analysis and Queries

Policy effect queries: Absence of Conflicts

Let G be a well-formed policy graph. Assume an action a1
performed by a service s1 is in conflict with an action a2 by s2.
The policy graph G ensures absence of conflict between a1, s1 and
a2, s2 if for each kind of data item di generated by a device d , in

the paths of type DDI ,DIC , (
−→
CC )∗,CA,AS linking the nodes

representing d and the nodes representing s1 and s2, the set of
values for the attribute ent in labels of nodes of type A in each
path do not contain a1 at the same time as a2.



Future work

• Policy combinations

• IoT-cloud architecture for performance analysis on larger scale
applications.


